This study demonstrates that in a cohort of young adults with T1D there were no significant changes in the diagnosis or management of hypertension, dyslipidemia, microalbuminuria or neuropathy during the transition period from pediatric to adult care. These findings were counter to the original hypothesis that pediatric providers were inadequately addressing T1D-related complications as compared to adult providers. However, the findings are concerning for the overall suboptimal adherence of both adult and pediatric providers to widely available screening guidelines for hypertension, dyslipidemia, microalbuminuria, retinopathy, and neuropathy.
Adherence to hypertension screening was very high with nearly no missed diagnoses of hypertension, likely due to the routine measurement of blood pressure in clinical practice. Adherence to lipid screening was fair but suboptimal (74–83%); of subjects with up-to-date screening, approximately 20% of subjects had unrecognized or undocumented dyslipidemia before and after transition. Adherence to screening for chronic kidney disease with microalbumin testing increased significantly after transition. Interestingly, screening for chronic kidney disease when it was not indicated also increased after transition suggesting that adult providers may be more apt to reflexively order this screening in patients regardless of guidelines. There was no difference in adherence to retinopathy screening between the two groups; however, it was not performed in approximately 20% of the patients in which screening was indicated. Several subjects had eye exams performed when not indicated, which may reflect eye exams being obtained for reasons unrelated to T1D. Although not significant, the number of patients with undiagnosed hypertension, dyslipidemia, and microalbuminuria did increase after transition. This has important implications for the care of these patients as the presence of these complications should prompt providers to evaluate for possible co-morbid cardiovascular risk factors, discuss necessary lifestyle changes and consider treatment with medications as indicated. Furthermore, given the high concurrent complication burden in patients with T1D [11, 12], providers should be aware of the increased risk of developing further diabetes-associated complications, assess patients regularly according to guidelines, and manage appropriately. Of note, the ADA does not provide firm guidance on indications to rescreen nor an appropriate timeline in which to repeat lipid testing when abnormal in adult patients with T1D, which may potentially create confusion for providers [18, 19]. There has also been increasing uncertainty about extrapolation of cardiovascular risk assessment and pharmacologic intervention from mostly type 2 diabetes to the T1D population [23] as well as increased recognition of adverse effects of statins such as myopathy, which may be particularly bothersome to physically active young adults [24]. These factors may have contributed to the number of “undiagnosed” dyslipidemia and low rate of statin treatment.
Although adherence to screening for neuropathy increased after transition to an adult provider in this study, the rate of adherence with neuropathy screening remained much lower than was anticipated as nearly half of the patients in which screening for neuropathy was indicated were missed. The pediatric providers performed much worse, performing recommended foot exams on only 4% of eligible subjects, highlighting a significant need for practice improvement. Improved adherence to neuropathy screening is most important in young adults as the risk of T1D-associated complications increase with longer duration of disease [11,12,13,14], and patients with T1D that develop diabetic foot disease have been shown to have lower self-reported quality of life [25]. These complications may be mitigated if recognized and treated at their onset.
In this study there was no significant change to a given patient’s HbA1c over the transition time counter to what has been shown in prior studies [9]. However, like findings reported by the T1D Exchange [4], the mean HbA1c levels both before and after transition in these young adults were well above the recommended target (HbA1c < 7.5 and < 7% in those less than and greater than 18 years of age, respectively). Prior studies have documented that poor glycemic control is associated with worse health outcomes [10, 11].
There were several limitations of this study. This study was limited to a single academic medical center as this allowed complete access to pediatric and adult clinic electronic medical records. However, this only captured approximately 1/2 of subjects followed in the CW Diabetes Clinic practice who transitioned to adult care at least 1 year prior to the chart review. The other 1/2 of subjects receiving care through the CW Diabetes Clinic transitioned care to outside providers. This reflects the geographically large catchment area for the pediatric diabetes practice and lack of competing non-academic providers in Southeastern Wisconsin as well as the much broader access to adult providers in non-academic groups throughout the same region. As such, the data collected therefore are reflective of a smaller subset of providers under the umbrella of the same institution and may not be generalizable to private practice, for example. Despite this limitation, the subjects studied appear largely representative of the larger pediatric patient population in the CW Diabetes Clinic based on gender, ethnicity, and BMI z-score. Additionally, the HbA1c values were similar between those who remained in the same institution and those who sought adult care elsewhere. An additional limitation is that only blood pressures obtained at diabetes clinic visits were included in the study, and higher blood pressure measurements may have been missed, possibly decreasing the rates of hypertension diagnoses. Not included in this study was collection of data regarding atherosclerotic cardiovascular disease risk factors to determine if patients with diagnosed dyslipidemia would benefit from statin therapy per ADA guidelines. Finally, adherence to neuropathy screening was based on inclusion of specific terms in the medical record or evidence of a foot exam in the physical exam section of clinic notes. Therefore, it is possible that the screening was performed but not documented which could have resulted in a falsely lower rate of adherence.
Our study most significantly highlights the need for practice improvement in the care of patients with T1D. In response to the findings highlighted in this study, the pediatric practice recognized the need for quality improvement and enacted several changes to their practice model. A quality improvement project including a plan-do-study-act cycle has been initiated in attempt to increase rates of adherence to screening for peripheral neuropathy [26]. For example, formal provider education on how and when to perform peripheral neuropathy screening has been conducted, monofilaments have been made available in examination rooms, and a specific diabetic foot exam has been added to the physical examination template in the electronic health record. Rates of adherence to peripheral neuropathy screening will be reviewed 6 months after these interventions to evaluate for improvements. Additionally, given the recognition that the rate of adherence to microalbuminuria screening is low, urine samples are now collected in clinic rather than asking patients to go to a lab for testing.
It is important to note that the ADA ‘Standards of Medical Care in Diabetes’ guidelines are updated annually. This study used the 2018 guidelines when determining adherence to recommended screening parameters. Across the timespan the guidelines have remained largely unchanged when compared to the most recently released guidelines in 2020, particularly in the delivery of care of older adolescents and adults with T1D, which was the population studied in this chart review. However, it is important to note a few of the major changes which have occurred within the past few years. For dyslipidemia screening in pediatric patients, it is now recommended that if the LDL level is within the accepted risk level, a repeat lipid profile should be obtained every 3 years rather than every 5 years as was previously recommended [19, 27]. Retinopathy screening is now recommended in pediatric patients once they are aged ≥11 years or puberty has started, whichever is earlier, and once they have had T1D for 3–5 years [27]. Per the most recent guidelines, retinopathy screening should be performed every 2 years after the initial comprehensive and dilated eye exam but could be performed as infrequently as every 4 years on the advice of an eye care professional and based on risk factor assessment and adequate glycemic control [27]. Previously it was recommended that eye examinations be performed annually with the option to perform every 2 years based on advice of an eye care professional and risk factor assessment [19]. In adult patients, blood pressure targets should now be individualized through a shared decision-making process that addresses risk factors, potential for adverse effects, and patient preferences [28] whereas a previous goal blood pressure of < 140/90 mmHg was recommended for most patients with diabetes and hypertension [17]. Screening for chronic kidney disease should now be performed twice annually in patients with a prior urinary microalbumin-to-creatinine ratio > 30 mg/g and/or an estimated glomerular filtration rate < 60 mL/min/1.73 m2 rather than annually as was previously recommended [18, 29]. In order to provide optimal patient care based on the most recent evidence-based guidelines, it is important for providers to stay informed of the screening guidelines which are updated annually.