Earlier diagnosis of TS would help initiate appropriate management and counselling aimed to minimize long-term complications and co-morbidities. Overall, this would improve the quality of life for these patients. Massa et al. collected data, in Belgium, from 1991 to 2002 which included 242 patients with TS, and showed that the mean age of TS diagnosis was 6.6 years [8], which was a significant improvement compared to the results that Massa found over 10 years prior [8, 9]. This study was also based in Belgium with a sample size of 100 patients and data was collected from 1972 to 1988 [9]. Ten years later, we have noted only marginal improvement in the age at diagnosis of TS (5.89 years).
Gravholt et al. noted that, in Denmark, there is an increase in TS diagnosis during the antenatal period [5]. There is no association between TS and increase in maternal age, but it is thought that this may be the reason for antenatal screening [5]. Our results showed that at least 29% of pre-natal diagnoses were secondary to maternal age. This figure could be higher but unfortunately we did not have all the reasons for screening in this group.
Following on from antenatal diagnosis, the next opportunity for diagnosis is the neonatal period. By using the ‘guidelines for screening for TS’ [7], three of the major features (webbed neck, peripheral lymphoedema and coarctation of the aorta) and several minor features can be potentially identified during the routine newborn examination. Education in this area could lead to appropriate screening soon after birth and optimal intervention can be given to those found to have the diagnosis of TS.
Interestingly, developments in TS showed that nearly 10% of patients, who were diagnosed during infancy and childhood, were found to have cardiovascular defects [6]. These defects include coarctation of the aorta and left heart hypoplasia [6]. Wong et al. completed a cohort study with a sample of 132 patients with known coarctation of the aorta [10]. It was concluded that 5.3% of females with coarctation of the aorta were diagnosed with TS following routine karyotype analysis. Their recommendation was that all female patients with coarctation of the aorta should have TS screening immediately after diagnosis [10]. Of those with cardiovascular disease, many present with aortic dissection or aneurysm, which can be fatal [6]. Therefore identifying cardiovascular defects as early as possible is important so that the patients can be managed and monitored appropriately. Also, it would allow early education and advice to the girl and her family regarding the disease and symptoms to be aware of [6].
The Dutch height screening guidelines showed an increase in referrals with short stature especially with inaccuracy of length measurements in the first 3 years of life [11]. In this study, the authors felt that the then proposed UK consensus approach could lead to less referral but was not sensitive enough to detect TS promptly. The authors concluded that a scheme is required which has high sensitivity and low false positive results [11]. Another paper reviewed multiple studies worldwide and showed that a number of pathological conditions (including TS) were diagnosed where short stature was the only clinical finding. Therefore, it has highlighted that without height screening programmes in these countries many patients would have had a delay in their diagnosis [12]. Early detection means affected children can have optimal management and improve their quality of life [12]. There is no community-screening program dedicated to identify short stature at the moment in UK. Some auxology measurements are undertaken as part of the National Child Measurement Program with a focus on identifying obesity. However, there is no dedicated pathway to identify short stature from these [13].
Our study showed that the majority (54%) of the patients were diagnosed during the childhood period. 53% of this group was screened secondary to short stature. The guidelines recommend screening if a girl has an unexplained short stature (height < 5th percentile) [7]. The potential delay in diagnosis for these children is difficult to assess in the UK because there is no community height-screening programme. Prompt investigation of children with abnormal growth has been shown to give the best chance for effective treatment and thus good clinical outcomes [14]. It allows recombinant human growth hormone (GH) to be introduced in a timely fashion to improve the height prior to oestrogen therapy [4, 8]. If GH is started early the mean adult height is around 150 cm compared to 140 cm without GH [2]. If diagnosis is made after the age of twelve years, the time gap to initiate GH therapy is missed and this results in a lower adult height [8].
We found that 20% of patients were diagnosed between the ages of 12 and 18 years. In TS, 80% of the girls have delayed puberty [1], and in this study 15% of those presenting during adolescence were worried about delayed puberty. Guidelines state that all females who have not reached Tanner Stage 2 of breast development by age 13 or primary amenorrhoea by 15 years should be investigated. Unfortunately, often this problem is not acted on immediately and diagnosis can be delayed [1]. Puberty is induced by using oestrogen therapy and the timing and dosage is extremely important for each individual girl with TS. Early diagnosis of TS is essential so that GH can be given for the appropriate duration prior to initiating oestrogen therapy [4]. GH and oestrogen at the appropriate age has shown to give girls a near normal adult height, improved bone mass and sexual function [1].
Another issue that needs to be addressed for TS patients is initiating psychological and educational support to optimise social interaction and educational achievements. All of these factors can certainly improve the quality of life of those affected.