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Abstract

Context: The age of puberty has fallen over the past 130 years in industrialized, western countries, and this fall is
widely referred to as the secular trend for earlier puberty. The current study was undertaken to test two
evolutionary theories: (a) the reproductive system maximizes the number of offspring in response to positive
environmental cues in terms of energy balance, and (b) early puberty is a trade-off response for high mortality rate
and reduced resource availability.

Methods: Using a sample of 22 natural-fertility societies of mostly tropical foragers, horticulturalists, and pastoralists
from Africa, South America, Australia, and Southeastern Asia, this study compares indices of adolescence growth
and menarche with those of fertility fitness in these non-industrial, traditional societies.

Results: The average age at menarche correlated with the first reproduction, but did not correlate with the total
fertility rate TFR or reproductive fitness. The age at menarche correlated negatively with their average adult body
mass, and the average adult body weight positively correlated with reproductive fitness. Survivorship did not
correlate with the age at menarche or age indices of the adolescent growth spurt. The population density
correlated positively with the age at first reproduction, but not with menarche age, TFR, or reproductive fitness.

Conclusions: Based on our analyses, we reject the working hypotheses that reproductive fitness is enhanced in
societies with early puberty or that early menarche is an adaptive response to greater mortality risk. Whereas body
mass is a measure of resources is tightly associated with fitness, the age of menarche is not.

Introduction
The age of puberty has fallen over the past 130 years in
industrialized, western countries, where menarche age
has receded from 16.5 years in 1880 to the current 12.5
years in western societies; this decline has occurred con-
comitantly with an improvement in child health [1]. The
progressively declining age of thelarche and menarche
may have multiple explanations. Primates’ studies sug-
gest a role for prenatal androgens and social factors
(like the social rank) [2,3]. In the last decade, a popular
notion among investigators is that early puberty may
result from environmental exposure to endocrine dis-
rupting chemicals (EDC), thus accelerating hypothalamic
maturation [4]. Whereas EDC may have a bearing on
the earlier age of thelarche, evolutionary forces may add

a new angel to explain the secular trend in the age of
menarche over the last 130 years. Even though the age
at menarche is strongly linked to genetic variations [5],
the time course of the secular trend suggests strong
environmental influence.
This secular trend for early onset of puberty is a topic of

much research interest. This trend was recently examined
from a life-history evolutionary perspective, and we pre-
viously suggested that transition from juvenility to adoles-
cence is a period of adaptive plasticity [6,7]. Two models
have been proposed to explain this adaptation. Gluckman
and Hanson suggested that life-history strategies for
greater reproductive fitness (a product of the fertility rate
and survivorship) could account for the current early
onset of puberty [8]. The declining age of pubertal devel-
opment have both been proposed as an adaptive response
to positive environmental cues in terms of energy balance
[7]. The assumption is that the reproductive system maxi-
mizes the number of offspring by balancing the benefit of
more births against the costs of maternal mortality. With
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respect to puberty, women face a trade-off between spend-
ing a long time accumulating resources through childhood
growth and weight gain in order to improve the likelihood
for successful pregnancy, against an early-age reproduction
in order to increase the number of reproductive cycles.
Indeed, heavy women in pre-industrial societies are more
fertile, and both increased body weight and fertility are
correlated with high birth rates [9]. This trade-off model
has been used to predict that 18 years is the optimal age
for first birth, which is near the observed average 17.5
years in such societies [10].
A different evolutionary trade-off was suggested by

Migliano et al [11]. Based on analysis of the stature,
growth, and reproductive fitness for the Aeta and the
Batak pygmy from the Philippines, they argued that that
the small body size of pygmy populations is an adapta-
tion that evolved as the result of a life history tradeoff
between the fertility benefits of a large body size against
the costs of late growth cessation, under the circum-
stances of significant young and adult mortality. They
showed that the small pygmy body size evolved through
the early onset age of juvenility and adolescence [12],
and suggested early cessation of growth is a trade-off for
high mortality rate and reduced resource availability.
Thus, short life expectancy may be initially a determi-
nant of early puberty but subsequently, early puberty as

an adaptive response may determine longer lifespan due
to reduced adult size and resource need.
The present study was designed to explore these two

hypotheses. To this end, it takes an inter-population
approach that compares indices of adolescence (menarche,
and the growth spurt) with those of fertility fitness in non-
industrial, traditional societies. Using a sample of 22 nat-
ural-fertility societies of mostly tropical foragers, horticul-
turalists, and pastoralists from Africa, South America,
Australia, and Southeastern Asia, we hypothesized that (a)
early adolescence would be associated with greater repro-
ductive fitness or (b) with mortality risk, and predicted
that the age at menarche and indices of pubertal growth
will (a) negatively correlate with fertility rate or (b) posi-
tively correlate with survivorship. Although the reproduc-
tive and life history strategies of males and females are
quite distinct in these societies, similar considerations
might apply to the males, for which we included indices of
adolescent growth spurt in our study.

Methods
Natural-fertility human societies
The sample used here is 22 subsistence-based societies
and the demographic characteristics of each society, col-
lected at different times during 1967-1988; these have
been previously described [13] (Table 1). Information on

Table 1 Ecology and economy type of the twenty tribes comprising the study populations

Name Country Ecology Economy Subjects

Aeta Philippines tropical forest mixed 365

Baka (West Pygmy) Cameroon tropical forest forager 217

Batak Philippines tropical forest mixed 36

Arnhem land Australia coastal/desert farming-foraging > 700

Guaja Brazil neotropical forest forager 103

Hadza Tanzania savanna/woodland forager > 700

Hiwi Venezuela savanna/gallery forager 59

Ju’/hoansi Botswana/Namibia desert/savanna forager 278

Maku-Nadeb Brazil neotropical forest farming-foraging 97

Tsimane Bolivia neotropical forest farming-foraging 603

Yanomamo Venezuela neotropical forest farming-foraging 116

Ache Paraguay neotropical forest farming-foraging 484

Casiguran Agta Philippines tropical forest forager 155

Aka Congo/C.A.R. tropical forest forager 186

Efe (East Pygmy) Congo (Ituri) tropical forest forager 145

Gainj & Asai New Guinea highlanders farming-foraging 153

Turkana Kenya savanna pastoral/mixed 417

Warao Venezuela tropical forest forager 116

Gambia Gambia savanna/forest gallery farming-foraging > 700

Toba Argentina savanna/dry forest mixed 411

Wichi Argentina savanna/dry forest mixed 328

Maya Mexico forest/savanna mixed 182
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the life history and population density of these societies
and their average height, body weight, and BMI is avail-
able at http://anthropology.missouri.edu/people/walker.
html as compiled by one of us (RSW) from previous
reports [14-16] and sources therein. In these societies,
the age of menarche ranged from 12.6-18.4, and the age
at growth spurt takeoff ranged from 10-13.5 years.
The stages of puberty were determined in girls of each

society by the mean age of menarche, by the adolescent
takeoff height velocity, peak height velocity, and for the
end of puberty - the return to weight and height takeoff
velocities. Indices of fertility in each society were deter-
mined from the average age at first reproduction, the
interbirth interval (IBI, by self report), and total fertility
rate (TFR). Reproductive fitness was calculated per
society from the population average survivorship to age
15 (L15, range 0.33-0.80) and the TFR (range 2.6-9.0),
TFR*L15, as previously suggested [17]. Mortality risk
was determined from the survivorship to age 15 and life
expectancy at birth (range 24.3-47.5) and age 15 (range
29.6-47.0).
At the time of data collection, ethical approval was

considered not required, and the authors had no access
to individuals’ data.

Statistical analyses
Linear regression analyses with 95% confidence intervals
of outcome as a function of IBI were performed using Sta-
tistica 6.0. For these analyses, the average of each study
parameter for each society was a single point in the regres-
sion analysis. One-way analysis of variance (ANOVA) was
used to determine whether statistical differences exist
between the study parameters in the 22 studied societies.
Statistical significance was set at p < 0.05.

Results
Adolescent age and reproductive fitness
The age at menarche correlated positively with the age
at first reproduction (r = 0.762, p < 0.001), and the aver-
age duration between the two events was four years
(Figure 1). When we tested the hypothesis that early
adolescence is associated with increased reproductive fit-
ness, the age at menarche and the growth indices (age at
takeoff, peak velocity, and the return to weight and
height takeoff velocity) did not correlate with the IBI
(Table 2). The age at menarche did not correlate with
TFR or reproductive fitness (NS: r = -0.208, p = 0.440; r
= -0.008, p = 0.983, respectively), whereas the age at
first reproduction correlated positively with the age at
height spurt takeoff (r = 0.794, p = 0.003; Figure 2),
peak height velocity (r = 0.791, p = 0.011), and return to
takeoff height velocity (r = 0.765, p = 0.027), but TFR
and reproductive fitness did not correlate with any of
these variables (Table 2).

Body size
The average age at menarche correlated negatively with
the average adult body weight (kg) (r = -0.599, p = 0.014;
Figure 3) and body mass index (BMI) (r = -0.632, p =
0.009; Figure 3), but not with the average adult height
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Figure 1 Age of menarche and the first reproduction . A
regression line and 95% confidence limits for the age of the first
reproduction as a function of the menarche age in traditional
societies. The dashed line connects identical ages on the X and Y
axes, demonstrating the constant age gap between the menarche
age and first reproduction age.

Table 2 Insignificant correlations

Correlations r p

Fitness Age at menarche vs IBI 0.248 0.354

Age at takeoff velocity vs IBI 0.501 0.117

Age at menarche vs TFR -0.208 0.440

Age at menarche vs reproductive fitness -0.008 0.983

TFR vs age at takeoff velocity -0.565 0.089

Reproductive fitness vs age at takeoff
velocity

-0.356 0.489

Reproductive fitness vs age at peak
velocity

-0.457 0.543

Body size Age at menarche vs average adult height -0.109 0.687

Average adult height vs age at first
reproduction

-0.042 0.856

Average adult height vs TFR 0.355 0.148

Average adult height vs reproductive
fitness

0.480 0.135

BMI vs TFR 0.296 0.232

BMI vs reproductive fitness 0.347 0.295

Density Population density vs age at menarche 0.235 0.486

Population density vs TFR 0.202 0.530

Population density vs reproductive fitness 0.141 0.698

Survivorship Survivorship to age 15 vs age at menarche 0.207 0.541

Life expectancy at birth vs age at
menarche

0.146 0.688

Life expectancy at age 15 vs age at
menarche

0.139 0.701

BMI - body mass index, IBI - interbirth interval, TFR - total fertility rate,
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(Table 2). The average adult body weight (kg) correlated
negatively with the age at first reproduction (r = -0.450, p
= 0.041), and the average adult body weight (kg) positively
correlated with the respective society’s reproductive fitness
(r = 0.660, p = 0.027; r = 0.717, p = 0.013, respectively; Fig-
ure 3). The average adult heights did not correlate with
the age at first reproduction, TFR, or reproductive fitness
(Table 2). The BMI correlated with the age at first repro-
duction (r = -0.466, p = 0.033), but not with the TFR or
reproductive fitness.

Adolescent age and the physical environment
The average age at menarche and parameters of the
growth spurt for each society did not correlate with
their respective population density. The population den-
sity correlated positively with the women’s age at first
reproduction (r = 0.680, p < 0.005), but not with
menarche age, TFR, or reproductive fitness (Table 2).

Adolescent age and survivorship expectancy
When we tested the hypothesis that early adolescence
and small body size is a trade-off for high mortality risk,

we found that the survivorship to age 15 and life expec-
tancy at birth or age 15 did not correlate with the age at
menarche or age indices of the adolescent growth spurt
(Table 2). Adding survivorship to a multivariate analysis
for age at menarche or age at first reproduction as a
function of BMI and population density added no statis-
tical significance.

Ecological and economic correlates
When the societies were categorizing societies by their
ecology, dwellers of the tropical forest, the neotropical
forest, and the savanna had comparable ages at
menarche and reproductive fitness. Of the studied socie-
ties, the TFR was highest among dwellers of neotropical
forests (8.3 ± 0.6), as compared to those in the savanna
(6.5 ± 0.7) and the tropical forests (5.4 ± 1.7, p = 0.015;
Table 3). When the societies were categorized by their
economy type, the age at menarche, TFR, and reproduc-
tive fitness were not significantly different between the
farmers-foragers, the foragers, and the mixed-economy
groups (results not shown).

Discussion
In considering human adolescence in the context of
evolutionary fitness, we considered key traits that were
available from data collected in 1967-1988. These
include the age of menarche, the pattern and timing of
the adolescent growth spurt, the body size, and the
determinants of reproductive fitness, namely the age of
the first reproduction, the IBI, the number of progeny,
and mortality risk [18]. The database contains no infor-
mation on birth size, which may influence the age at
menarche. Extended growth and large body size in
humans prompt fertility gains and reduced offspring
mortality [19]. Consequently there is a pressure for
delayed reproductive onset, whereas early reproduction
minimizes the likelihood of death before reproduction.
Several limitations of this approach require considera-

tion. i. By nature of this approach, comparing population
level averages and attributing differences to ecological
differences may not be straightforward. It assumes that
the relationships observed would be the same if exam-
ined at an individual level [20]. In their report, Greenland
and Robin construct several epidemiological examples
that show that data at the ecologic level can be misinter-
preted if nonlinear effects at the individual level, and
other confounds, are not accounted for. Such data for the
individual level were not available to us. ii. Comparative
studies across societies may also suffer from problems of
phylogenetic non-independence. This was addressed for
these data previously by adjusting for geographical loca-
tion (Africa, South America, Australia and Southeast
Asia), but the effect was very weak and not significant in
any of the multiple regressions [13].
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Figure 2 Puberty and reproductive fitness. A regression and 95%
confidence limits for the age at first reproduction as a function of
the height spurt takeoff in girls of traditional societies.
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Pubertal timing is not a univocal parameter; secular
changes may occur differently for some pubertal events.
Whereas the age of thelarche has reduced in the last
decades, changes in menarche have been more subtle
and mental maturation - deferred. Also, it is not clear
that menarche is a good proxy for fecundity. The age at
first reproduction in the present study strongly corre-
lated with menarche, but the potential role of anovula-
tory menstrual cycles after menarche and potential non-
linearity of this trend remain options. For example, it is

possible that girls who differ on age at menarche may
be similar with regard to age of fecundity; earlier
menarche may relate to a greater number of anovulatory
cycles [21], and indeed, regular (ovulatory) cycling was
shown to follow a secular trend towards delay as
opposed to early menarche [22].
The data show that at natural fertility, early adoles-

cence in girls, as assessed by the age of menarche and
the growth pattern, corresponds to a young age with the
first reproduction occurring about four years later, as
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Figure 3 Puberty and body weight. Upper panels: A regression and 95% confidence limits for the age at menarche as a function of the
average adult body weight (left panel) and BMI (right panel). Lower panels: A regression and 95% confidence limits for reproductive fitness as a
function of the body weight in both females (left panel) and males (right panel).

Table 3 Ecology type of the societies comprising the study populations

VARIABLES Tropical forest Neotropical forest Savanna/other p Value

Age at menarche (n) (n = 6)
15.5 ± 1.4

(n = 2)
14.6 ± 1.0

(n = 6)
14.3 ± 1.8

0.45

TFR (n) (n = 6)
5.4 ± 1.7

(n = 3)
8.3 ± 0.6

(n = 7)
6.5 ± 0.7

0.015

Reproductive fitness (n) (n = 3)
2.6 ± 0.9

(n = 3)
5.3 ± 1.7

(n = 4)
3.9 ± 1.2

0.09

TFR - total fertility rate, mean ± SD
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previously suggested [23]. However, based on our ana-
lyses, we reject the two working hypotheses: reproduc-
tive fitness is enhanced in societies with early puberty
[8] and early menarche is an adaptive response to
greater mortality risk [11].
We focus here on subsistence-based societies because

most resources are invested as somatic capital in terms
of growth, body size and fertility (reproductive fitness),
as opposed to stored and inherited wealth [15]. The
relative contribution of biological and behavioral factors
in determining natural fertility change with the environ-
ment. Environmental factors to consider in an inter-
population study include the physical environment (e.g.,
population density), the biological environment (e.g.,
food availability, disease, and other mortality risks) and
social behaviors (e.g., age at marriage) [15]. We defined
reproductive fitness as a function of TFR and L15, as
previously suggested [17]; these two variables were
selected among other because information on these two
parameters was available for almost all of the societies
in the database. The age at menarche did not correlate
with TFR or reproductive fitness. Whereas reproduction
starts early in societies in which puberty occurs early, in
the context of high population density [19], their repro-
ductive fitness does not increase. The dwellers of the
neotropical forests have a high TFR, but given their
mortality risk, they have comparable reproductive fitness
to the other ecology groups.
We confirm a previous assertion for greater reproduc-

tive fitness among heavier, better-nourished traditional
societies [9,24]. When considered as a whole, we found
that the average adult body weight, but not height, corre-
lated negatively with age at menarche and the age at first
reproduction, and positively with reproductive fitness.
The BMI may not work as well in the extremes of size; in
very small or very tall populations the BMI is not as
accurate as it is in average size populations. Even though,
these findings provide indirect support to the hypothesis
that early puberty among girls who live in affluent and
developed countries is a response to a positive energy
balance. Indeed, among contemporary girls in developing
countries, the age at menarche among the prosperous is
earlier than that of the underpriviledged [1].
Based on the high mortality rates of the Philippine

pygmy, Migliano et al suggested that early fertility is
part of the “fast” extreme of life history strategies to
which the pygmy adapt [25], with both longevity and
resource availability as limiting factors [11]. Indeed,
early life stress is associated with premature juvenility
and adolescence [1,12,26]. The results of the present
study do not confirm the fast life history theory; we
found no correlation between adult height and the age
of menarche with survivorship. Yet, population density
correlated with the age of first reproduction, in addition

to our previous assertion that body size in a traditional
society was dependent upon the population density [19].
We have previously suggested that population density
acts through two pathways - nutritional constraints and
juvenile mortality - at varying intensities, and can con-
tribute to a nearly twofold range in body size across
human societies [19]. The sample of the present study
includes two African pygmy groups - the Baka (West
pygmy) and the Efe (East pygmy), both of whom are not
consistent with the Migliano risk/early fertility model.
The average age of menarche and age at first reproduc-
tion in these two societies, 14.5 and 15.5, respectively
18.5 and 19, respectively, were close to those of all of
the other studied societies [13].
The secular trend for an early age of menarche has

been rapid over the past 130 years in developed coun-
tries [27]. This trend is rightly interpreted as a reflection
of improved nutrition and health in childhood [18]. Life
history theory postulates tradeoffs of current versus
future reproduction and fertility versus mortality risk.
Life-history modeling predicted that a reduction in juve-
nile mortality reduces the age of menarche [8] or that
low survivorship accelerates the life history [11]. Given
the close interaction between resource availability and
reproduction, we anticipated that those environmental
factors that determine late metabolic homeostasis,
attainment of adult size and cessation of growth would
interface with those influencing the timing of sexual
maturation. The data do not support these predictions.
Whereas body mass as a measure of resources is tightly
associated with fitness in these traditional societies, the
age of menarche is not. Thus, it may be that women’s
physiology tracks its own condition in such a way as to
maximize their individual fitness.
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