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Abstract

Background: Mutations in ABCC8 and KCNJ1T are the most common cause of congenital hyperinsulinism (CHI).
Recessive as well as dominant acting ABCC8/KCNJ11 mutations have been described. Diazoxide, which is the first
line medication for CHI, is usually ineffective in recessive ABCC8 mutations. We describe the clinical and molecular
characterisation of a recessive ABCC8 mutation in a CHI patient that is diazoxide response.

Clinical case: A term macrosomic female infant presented with symptomatic persistent hypoglycaemia confirmed
to be secondary to CHI. She exhibited an excellent response to moderate doses of diazoxide (10 mg/kg/day).
Molecular genetic analysis of the proband confirmed a biallelic ABCC8 mutation — missense R526C inherited from
an unaffected mother and a frameshift c.1879delC mutation (H627Mfs*20) inherited from an unaffected father.
Follow-up highlighted persistent requirement for diazoxide to control CHI. Functional analysis of mutants confirmed
them to result in diazoxide-responsive CHI, consistent with the clinical phenotype.

Conclusion: Biallelic ABCC8 mutations may result in diazoxide-responsive CHI. Irrespective of the molecular genetic
analysis results, accurate assessment of the response to diazoxide should be undertaken before classifying a patient

as diazoxide-responsive or unresponsive CHI.
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Background

Congenital hyperinsulinism (CHI) is due to an inappro-
priate insulin secretion by the P-cells of the islets of
Langerhans [1]. It usually presents with severe hypoketo-
tic hypofattyacidaemic hypoglycaemia [2]. The majority
of the affected newborns are macrosomic at birth and re-
quire high intravenous glucose administration to maintain
plasma glucose above 3.5 mmol/I [3].

Mutations in ABCC8 and KCNJ11, which encode the
SUR1 and Kir6.2 subunits of pancreatic ATP-sensitive
potassium channel (Karp), are by far the most common
cause of CHI and are estimated to account for 36%-69%
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of all cases [4-6]. Korp channels are octameric protein
complexes composed of four pore-forming Kir6.2 sub-
units and four sulfonylurea receptor 1 (SUR1) subunits,
and form a link between cellular metabolism and mem-
brane excitability [7,8]. It is thought that the B-cells in
patients with CHI are persistently depolarized because
of abnormally modulated or absent Karp channels. This
depolarisation opens the voltage-gated calcium channels
and leads to unregulated insulin exocytosis. Although
dominant acting ABCC8/KCNJ11 mutations have been
reported, recessively inherited mutations are more com-
mon [4,5,9,10].

Diazoxide, which binds to the SUR1 subunit of the
Karp channel and reduces insulin secretion by hyperpo-
larisation of the pancreatic -cell plasma membrane, is
the first line of treatment for CHI [1]. However, reces-
sive inactivating mutations in ABCC8 and KCNJ11 usu-
ally cause severe diazoxide-unresponsive CHI due to
defects in channel biogenesis, turnover, trafficking or
regulation [11].
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We describe a unique genotype-phenotype correlation
with diazoxide responsive CHI in a patient with compound
heterozygous ABCC8 mutation. Functional work on the mu-
tants was consistent with the observed clinical phenotype.

Case presentation

Clinical case

A term large-for-gestational age (birth weight 4500 g
at 39 weeks gestation) female infant born to non-
consanguineous Caucasian parents presented with
symptomatic hypoglycaemia on first day of life. There
was no history of gestational diabetes mellitus in the
mother. The proband developed tonic clonic seizures
associated with laboratory blood glucose of 0.4 mmol/I at
22 hours of age. The infection and metabolic screen was
negative. She required infusion of high concentration glu-
cose (glucose infusion rate 16 mg/kg/minute) to maintain
blood glucose above 3.5 mmol/l.

A controlled hypoglycaemia screen established the diag-
nosis of CHI (serum Insulin 44.5 mU/I associated with lab
glucose of 2.3 mmol/l and undetectable non-esterified
fatty acids and B-hydroxybutyrate). Her serum cortisol
was 570 nmol/l during the hypoglycaemia screen. The rest
of the hypoglycaemic screen including insulin like growth
factor-1 (IGF1), and insulin-like growth factor binding
protein-3 (IGFBP3), serum ammonia, lactate, acylcarnitine
profile, plasma amino acids and urine organic acids was
within normal reference range (results not shown).

Molecular genetic analysis for CHI was performed after
informed consent from the parents (see below). She was
commenced on diazoxide (5 mg/kg/day in three divided
doses) and the dose was gradually increased to 10 mg/kg/
day. Chlorothiazide was given along with diazoxide to
counteract the side effect of fluid retention. On 10 mg/kg/
day of diazoxide, she was successfully weaned off intraven-
ous glucose administration. She demonstrated age appro-
priate fasting tolerance on diazoxide before discharge.

Blood glucose monitoring performed at home demon-
strated satisfactory glycaemic control on diazoxide. No ad-
justment in diazoxide dose was required with her growth.
At 9 months of age, a trial off diazoxide therapy resulted
in recurrence of hypoglycaemia with fasting tolerance of
only 3% hours. Diazoxide was recommenced at 5 mg/kg/
day, which led to disappearance of hypoglycaemia and age
appropriate fasting tolerance.

At the time of writing, the proband is 15 months old and
is able to fast for 12 hours without developing hypoglycaemia
on a low dose of diazoxide (5 mg/kg/day). Neurodevelop-
mental assessment did not identify any abnormality.

Genetic analysis

Methods

Genomic DNA was extracted from peripheral blood leu-
kocytes using standard procedures. The single exon of
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the KCNJ11 gene was amplified in 3 overlapping frag-
ments and sequenced. When no mutations were identi-
fied in KCNJ11, the 39 exons of the ABCC8 gene were
amplified by polymerase chain reaction (PCR). The prod-
ucts were sequenced using Big Dye Terminator cycler
sequencing Kit v3.1 (Applied Biosystems, Warrington,
UK) and sequencing reactions were analysed on an
ABI3730 (Applied Biosystems, Warrington, UK). Se-
quences were compared to the reference sequence (NM_
000352.2) using Mutation Surveyor software (SoftGenetics,
Pa., USA).

Results

Sequence analysis identified biallelic ABCC8 mutation in
the proband — a missense mutation, R526C, inherited
from an unaffected mother and a frameshift mutation,
¢.1879delC (H627Mfs*20), inherited from an unaffected
father. Both R526C and ¢.1879delC (H627Mfs*20) muta-
tions have previously been reported as recessive acting
mutations in patients with focal CHI [5].

Functional analysis of mutant channels

Methods

Single point mutations (R526C and c.1879delC) were in-
troduced into the hamster SUR1 clone by PCR using the
Strategene XL Mutagenesis Kit according to the manu-
facturer’s instructions.

Human Embryonic Kidney (HEK) 293 cells were transi-
ently transfected with Kir6.2/SUR1, Kir6.2/SUR1c1879delC,
Kir6.2/SURIR526C or Kir6.2/SUR1c1879C + SURIR526C
(together with a small amount of eGFP (Green Fluorescence
Protein) expressing plasmid to enable identification of
transfected cells using epifluorescence) using FuGENE
HD (Roche Diagnostics, UK) as per the manufacturers’ in-
structions and cells were subjected to whole cell patch-
clamp 48 hours after transfection.

Whole-cell patch-clamp recordings were performed as
previously described [12]. Capacitance transients and series
resistance in whole-cell recordings were compensated elec-
tronically by using amplifier circuitry (Multiclamp 700B).
Data were filtered at 1 kHz using the filter provided
with the Multiclamp 700B (4 pole Bessel) and sampled
at 5 kHz using a Digidata 1440 (Axon Instruments). Cur-
rents were acquired and analysed using pClamp 10.4
(Axon Instruments). The intracellular (pipette) solution
contained (mM); 140 KCl, 1.2 MgCl,, 1 CaCl,, 10 EGTA
and 5 HEPES, 0.1 mM Na.ATP and 1 mM NaADP,
pH 7.2 using KOH. The bath solution contained (mM); 5
KCl, 140 NaCl, 2.6 CaCl, 1.2 MgCl, and 5 HEPES
(pH 7.4). Pipette resistances were between 2—4 mQ. Diaz-
oxide and Tolbutamide were obtained from Sigma Aldrich
(Poole, UK). Agents were applied to the bath using a
gravity-driven perfusion system.
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Results

Whole-cell patch-clamp recordings from HEK 293 cells
transfected with wild-type (WT) Kir6.2/SUR1 cDNA
showed normal Karp currents which was activated by
the Katp channel opener diazoxide (100 M) and inhib-
ited by the Kp blocker tolbutamide (100 uM) (control,
144.77 + 25.57 pA/pF; diazoxide, 382.7 +37.67 pA/pF;
diazoxide + tolbutamide, 98.05 + 28.05 pA/pF, n=5 cells,
P < 0.05). Currents from cells transfected with the frameshift
mutation SUR1c1879delC were unresponsive to diazoxide
and tolbutamide (control, 85.26 +12.7 pA/pF; diazoxide,
91.98 + 14.36 pA/pF; tolbutamide, 79.57 + 11.57 pA/pF, n="7
cells, P > 0.05). In contrast, currents from cells transfected
with the missense mutation, SUR1R526C, activated in
the presence of diazoxide albeit to a lesser extent when
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compared to WT (control, 76.55+ 82 pA/pF; diazoxide,
175.2 + 1647 pA/pF; tolbutamide, 64.55 + 8.88 pA/pE, n=5
cells, P < 0.05).

Interestingly, co-expression of SUR1c1879delC and
SUR1R526C (to mimic the compound heterozygous ABCC8
(R256C/H627Mfs*20) mutation) rescued the diazoxide-
sensitive K,rp current which was absent when SUR1¢1879-
delC was expressed alone (control, 62.9+9.3 pA/pF;
diazoxide, 223.11 + 60.21 pA/pF; tolbutamide, 5226 + 11.36
PA/pE n =5 cells, P < 0.05). These data are shown in Figure 1.
The diazoxide-sensitive K rp current in the double mutant
transfected cells was significantly greater as compared to
SUR1c1879delC transfected cells (160.2 + 52.9 vs 8.72 +
441 pA/pE P=001) and equivalent to WT Kir6.2/SUR1
transfected cells (160.2 + 52.9 vs 237.9 + 59.1 pA/pE, P = 0.33).

SEM from 5-7 cells, *P < 0.05, **P < 0.01 compared to control
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Figure 1 Functional characterisation of Kyrp channels with a heterozygous ABCC8 R526C/H627Mfs*20 compound mutation. A, Representative
whole-cell time-current density traces at +40 mV recorded from HEK293 cells expressing Kir6.2/SUR1, Kir6.2/SUR1c1879delC, Kir6.2/SURTR526C and
Kir6.2/SURTR526C + SUR1C1879delC showing the effects of diazoxide (DZX) and tolbutamide (in the presence of diazoxide) (TOL). Current
were recorded using a 1 s ramp protocol (=150 mV to 50 mV). B, Summary of the mean current-densities at +40 mV. Values are mean +
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There was no statistically significant difference in the
Karp current seen in cells transfected with SUR1IR256C
alone and cells co-transfected with SURIR256C and
SUR1c1879delC (p = 0.291).

Discussion

We describe a patient with diazoxide responsive CHI due
to compound heterozygous ABCC8 mutation. The pro-
band was macrosomic at birth (consistent with foetal hy-
perinsulinism) and presented with severe hypoketotic
hypoglycaemia requiring high glucose infusion (16 mg/kg/
minute). Investigations confirmed CHI and compound
heterozygous ABCC8 (R256C/H627Mfs*20) mutation.
Surprisingly, the proband showed an excellent response to
moderate doses of diazoxide (10 mg/kg/day). Subsequent
follow-up revealed persistent requirement for diazoxide
to control CHI Functional analysis of the mutant Ksrp chan-
nel subunits confirmed a phenotype of diazoxide-responsive
CHI in association with ABCC8 R526C/H627Mfs*20 com-
pound heterozygous mutation.

Mutations in ABCC8 and KCNJ11, both monoallelic
and biallelic, account for the majority of CHI patients
[4,5]. Although monoallelic ABCC8/KCNJI11 mutations
can cause both diazoxide-responsive as well as diazoxide-
unresponsive CHI, nearly all biallelic ABCC8/KCNJ11 mu-
tations result in diazoxide unresponsive CHI [9,10,13,14].
In two recent large studies comprising more than 700
patients with CHI, there was no patient reported with
diazoxide responsive CHI due to biallelic ABCC8/KCNJ11
mutation [4,5].

However, Dekel et al. reported a patient with a com-
pound heterozygous ABCC8 mutation (c.3992-9G > A/
F1388del) who responded to diazoxide [15]. However,
no functional work was done to correlate with the clin-
ical observations.

Previous functional work on compound heterozygous
ABCC8 mutations has shown that mutations may inter-
act to modify Karp channel function and influence dis-
ease severity. Muzyamba et al. showed that single SUR1
mutants (D1193V or R1436Q) trafficked to the plasma
membrane whereas the double mutant (SUR1D1193V/
R1436Q) was retained in the endoplasmic reticulum
[16].

Both SUR1 R526C and H627Mfs*20 mutations have
been described previously as presumed recessive acting
mutations in association with CHI. Snider et al. reported
one patient each with both these mutations in associ-
ation with focal CHI [5]. No functional work had been
done on either of these mutations. The H627Mfs*20 mu-
tation is a frameshift mutation and is severely damaging
to the protein function as shown by our functional work.
When the SURIH627Mfs*20 mutant was co-expressed
with Kir6.2, there was no increase in current with the ap-
plication of diazoxide indicating either absence of Karp
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channels on the plasma membrane surface and\or severely
dysfunctional Karp channel. With the SURIR526C mutant,
there was reduced current flow under basal conditions as
compared to wild-type. However, importantly, there was an
increase in current with the application of diazoxide which
persisted when the two mutants (SUR1R526C/H627Mfs*20)
were expressed in combination, suggesting this variant to
be diazoxide-responsive.

As the frameshift mutation H627Mfs*20 results in a
premature termination codon and is likely to be degraded
by non-sense mediated decay, it is possible that the Katp
channels in double mutant SURIR256C/H627Mfs*20 will
contain SURI subunits produced by allele carrying R526C
mutation only and hence the response shown by the
SURIR256C/H627Mfs*20 resembles that of SURIR256C
mutant. However non-sense mediated decay cannot
be reproduced in the expression studies as that re-
quires replication of intronic and exonic structure of
the gene whereas the plasmids can only accommodate
c¢DNA of the gene.

Although we used 100 uM diazoxide to assess the re-
sponsiveness of SUR1 mutants, to our knowledge there
is no data in the literature as to what concentration of
diazoxide is achieved at the cellular level with the standard
doses of diazoxide used for medical management of CHL
However, assuming a distribution volume of ~0.2 L/kg,
the dose of diazoxide administered orally to this proband
is likely to result in a concentration higher (~2x) than the
100 uM we used for our studies at the cellular level [17].

Our functional data, however, is not consistent with
the previous observation of diazoxide-unresponsive focal
CHI in association with paternally inherited heterozygous
ABCC8 R526C mutation [5]. Marked intrafamilial clinical
heterogeneity in four haploidentical siblings harbouring
the identical ABCC8 homozygous ¢.3992-9G > A mutation
was also highlighted by Kapoor et al. [18]. This difference
in clinical expression may be due to background genetic
factors and other unknown factors involved in regulating
gene expression.

Conclusion

In conclusion, although the majority of biallelic ABCC8/
KCNJ11 mutations result in diazoxide-unresponsive CHI,
occasional biallelic and particularly compound heterozy-
gous ABCC8 mutations may lead to a diazoxide-responsive
phenotype. Accurate clinical assessment would avoid the
need for near-total pancreatectomy in such cases.

Consent

Written informed consent was obtained from the patient
for publication of this Case report and any accompany-
ing images. A copy of the written consent is available for
review by the Editor-in-Chief of this journal.
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